Cupper nitride (Cu$_3$N) is a promising photovoltaic material with a desirable electronic band structure, a high absorption coefficient, and dopability into both p- and n-type [1,2]. Electronically benign behavior of native point defects has been suggested theoretically, which is advantageous in the practical application of Cu$_3$N as an absorber of thin-film photovoltaic cells [2]. Regarding carrier generation, the Cu vacancy and interstitial are predicted to be a major native acceptor and donor, respectively [2,3]. In this study, the electronic levels and formation energies of native point defects in Cu$_3$N are investigated using first-principles calculations to discuss their contributions to carrier generation.

The calculations were performed using the projector augmented-wave method [4] as implemented in the VASP code [5,6]. The Perdew-Burke-Ernzerhof generalized gradient approximation (PBE-GGA) [7] with a Hubbard U correction [8] to the Cu-3d states ($U = 5$ eV) [2] and the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional [9,10] were employed. Point defects were modeled using supercells containing 32 atoms and a defect. Artificial interdefect electrostatic interactions in the supercell approach were corrected to accurately predict the properties of point defects at the dilute limit [11,12].

Figure 1 shows the calculated electronic band structure and density of states for Cu$_3$N. It exhibits an indirect-type band structure with a minimum band gap of 1.0 eV. This value is close to a previously reported value of 1.0 eV via a GW calculation with a local potential correction [2].

The calculated formation energies of native point defects are shown in Fig. 2. A Cu-rich condition is considered here, where equilibrium between Cu$_3$N and Cu metal is assumed. The Cu vacancy shows a low formation energy and a shallow acceptor level. The Cu interstitial is a dominant donor-type defect whose donor level is located almost at the conduction band minimum. These results are qualitatively consistent with previous theoretical studies [2,3]. Because of the dominance of the Cu interstitial, n-type behavior is expected under the Cu-rich condition. However, the carrier type would be converted into p-type as the chemical potentials are controlled toward Cu-poorer conditions: this leads to the decrease in the formation energy of the acceptor-type Cu vacancy and the increase in the formation energies of the donor-type Cu interstitial and N vacancy.

Acknowledgements: This work was supported by the MEXT Elements Strategy Initiative to Form Core Research Center and Scientific Research on Innovative Areas from JSPS.
References

FIG. 1. Electronic band structure and density of states for Cu$_3$N obtained using the HSE06 hybrid functional. The origin of the energy is set at the valence band maximum.

FIG. 2. Formation energies of native point defects in Cu$_3$N as a function of the Fermi level. PBE-GGA+U total energies in combination with band edges determined using the HSE06 hybrid functional were used. The origin of the Fermi level is set at the valence band maximum.